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Chapter 15

Metabolomic Profiling of Adherent Mammalian Cells In Situ
by LAESI-MS with Ion Mobility Separation

Sylwia A. Stopka and Akos Vertes

Abstract

Ambient ionization-based mass spectrometry (MS) methods coupled with ion mobility separation (IMS)
have emerged as promising approaches for high-throughput in situ analysis for biomedical to environmen-
tal applications. These methods are capable of direct profiling and molecular imaging of metabolites, lipids,
peptides, and xenobiotics from biological tissues with minimal sample preparation. Furthermore, employ-
ing IMS within the workflow improves the molecular coverage, resolves isobaric species, and improves
biomolecule identifications through accurate collision cross section measurements. Laser ablation electro-
spray ionization (LAESI)-MS coupled with IMS has been successful in profiling and molecular imaging of
small biomolecules directly from biological tissues and single cells. Herein, we describe a protocol for the
direct analysis of adherent mammalian cells with limited perturbations by LAESI-IMS-MS. A benefit of
IMS is that within the same LAESI acquisition, the spectral features related to the ESI background, washing
buffer, and cell signal can be extracted and isolated separately.

Key words Mass spectrometry, Ion mobility separation, Cell culture, Metabolites, In situ analysis,
Laser ablation electrospray ionization, LAESI-IMS-MS

1 Introduction

To uncover the relationship between the genotype and phenotype
of a biological system, a comprehensive analysis that encompasses
genomics, transcriptomics, proteomics, and metabolomics is
needed. Of these omics, metabolomics is the least established due
to a variety of challenges, e.g., the wide range of metabolite con-
centrations, varied compound polarities, and the diverse classes of
compounds [1]. Due to their high sensitivity and selectivity, mass
spectrometry (MS)-based platforms have been at the forefront in
the detection, identification, quantification, and spatiotemporal
mapping of biomolecules. The most common MS workflow for
metabolite analysis and quantification includes liquid chromatog-
raphy (LC) combined with stable isotope labeling. For example, the
absolute metabolite concentrations (ranging from millimolar to
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nanomolar) and fluxes of over 150 compounds were determined
for immortalized baby mouse kidney cells (IBMK) [2]. However,
this analysis requires extensive sample preparation, is considered
low-throughput, and does not capture any spatial information of
biomolecules within the tissue.

Ambient ionization MS methods provide an alternative
approach for metabolite, lipid, peptide, and xenobiotic analysis
and imaging from biological tissues with minimal sample prepara-
tion and under native conditions. A large number of ambient
sampling methods have been introduced including liquid-based,
plasma-based, and laser-based approaches [4, 5]. Due to the wide
versatility and adaptability of these techniques, applications in bio-
medical research have covered microbe-host interactions, environ-
mental studies, molecular imaging, and forensics problems [6–
9]. Among these, the more established methods include desorption
electrospray ionization (DESI), direct analysis in real time (DART),
and laser ablation electrospray ionization (LAESI) [10–12]. Due to
the high water content found in biological tissues and cells, laser-
based approaches that operate in the mid-IR range have been a
useful tool for in situ analysis. Here a mid-IR laser beam tuned to
the strongest absorbance maximum of water (2940 nm), which
corresponds to the symmetric stretching of the O–H bonds, is
focused onto the sample resulting in an ablation plume that is
ionized by electrospray ionization (ESI). To afford high-
throughput and direct sampling capabilities, ambient ionization
methods typically omit separation methods, e.g., HPLC, which
results in spectral complexity and ion suppression effects.

To retain the benefits of a separation step in combination with
direct sampling, ion mobility separation (IMS) can be introduced.
This expands the molecular coverage, improves the signal-to-noise
ratio, increases confidence in molecular identification through
determining the ion collision cross section (CCS), and resolves
isobaric species [13–16]. In this gas phase separation, ions are
differentiated within milliseconds based on their size, shape, and
charge state [17, 18]. The benefits are clearly observed when
coupling LAESI-MS with IMS, which have been demonstrated
for high-throughput metabolite profiling of living algal cells and
plant tissues, identification of isotopologues, determination of
turnover rates for small molecules, and separation of compound
classes [19, 20].

As many new therapies and diagnostic tools for human disease
are based on cellular models, the ability for in situ analysis of
adherent mammalian cells is valuable in biology and medicine
[21, 22]. To minimize cell manipulation, e.g., lysis and enzymatic
digestion that may affect the physiological state and alter biochem-
ical processes, direct sampling is beneficial [23]. Herein, we outline
a protocol using LAESI-MS coupled with IMS for the direct
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analysis of adherent mammalian cells. Separation and isolation of
ions related to the ESI background, washing buffer, and cells with
limited sample preparation is demonstrated with IMS.

2 Materials

2.1 Reagents

and Chemicals

1. Electrospray solution for negative ion mode: methanol:chloro-
form (2:1, v/v).

2. Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC
30-2002) supplemented with 10% fetal bovine serum (FBS)
(ATCC 30-2020), 1% MEM nonessential amino acid solution
(100�), and 1% penicillin–streptomycin for cell culture.

3. Phosphate-buffered saline (PBS) (ThermoFisher, Waltham,
MA) for cell washing and 0.25� trypsin-EDTA for cell
detachment.

4. 70% ethanol for sterilization.

2.2 Biological

Samples and Materials

1. Cryogenic stock of human neuroblast (SK-N-AS; ATCC
CRL-2137) derived from brain and bone marrow (seeNote 1).

2. Humidity-controlled cell incubator set at 5% CO2 and 37 �C.

3. Automated cell counter.

4. Ethanol-sterilized microscope slides.

5. 100 cm polystyrene petri dish.

2.3 LAESI-IMS-MS

2.3.1 Electrospray

1. The electrospray assembly consists of a conductive union, an
insulating mounting bracket, fused silica tubing, a needle port
(IDEX Health and Science, Oak Harbor, WA), and a 50 μm
ID-tapered metal emitter (MT320-50-5-5; New Objective,
Woburn, MA). The ESI assembly is mounted on a three-axis
translation stage using optical posts. The ESI emitter tip should
be positioned on axis and 12 mm from the mass spectrometer
orifice.

2. High voltage (�2.7 kV) is applied to the conductive union by a
regulated power supply (PS350; Stanford Research Systems,
Sunnyvale, CA) through a high-voltage cable (see Note 2).

3. A syringe pump is used to supply the ESI solution at a 500 nL/
min flowrate from a 500 μL syringe.

2.3.2 Laser Ablation 1. A mid-IR laser source (Opolette 100; Opotek, Carlsbad, CA)
used is tuned to 2940 nm wavelength for maximum absor-
bance. The produced laser pulses are 5 ns in length and are
emitted at a repetition rate of 20 Hz. The laser beam is steered
with gold-coated mirrors through a 30 mm cage system from
the laser cavity to the last optical component (see Note 3).
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2. A 75 mm planoconvex focal length ZnSe lens (Infrared Optical
Products, Farmingdale, NY) is used to focus the mid-IR laser
beam on the sample. The microscope slide containing the
adherent cells is mounted on an XYZ stage that is positioned
15 mm below the orifice–ESI axis. The alignment diode can be
used to visualize the laser beam on the sample surface.

3. Assure that the laser beam is focused by firing single shots at
thermal paper and use a microscope to observe the produced
spot size. Adjust the distance between the lens, and the sample
until the spot is circular and shows minimum size.

2.3.3 IMS Configuration 1. A homebuilt LAESI source is retrofitted to the front end of a
commercial quadrupole time-of-flight mass spectrometer
(Synapt G2S; Waters, Milford, MA). This system is equipped
with a traveling-wave (T-wave) IMS with a resolving power of
Ω/ΔΩ ¼ 30.

2. Nitrogen is used as the drift gas and supplied at a flow rate of
90 mL/min, a pressure of 3.35 mbar, and a delay coefficient of
1.41 V (see Note 4).

3. The height and velocity of the traveling wave were set to 40 V
and 650 m/s, respectively.

4. Ion collision cross section (CCS) values were derived using
polyalanine oligomers with n ¼ 3–14 as the calibrant. This
calibration method covered the m/z range from 230 to 1011.

3 Methods

3.1 Sample

Preparation

1. Using a glass pen scribe, cut to three parts of similar dimension
75 � 25 mm2 microscope slides. Sterilize them with 70%
ethanol and UV light on both sides in a sterile environment.
Arrange the cut slides next to each other in a 100 cm petri dish
covering most of the dish without any overlap. Smaller micro-
scope slides afford shorter measurement times thereby improve
reproducibility.

2. Culture the stock SK-N-AS cells in the supplemented DMEM
medium in a T75-uncoated culture flask. The medium is aspi-
rated from the flask, washed once with 1� PBS, and filled with
4 mL of prewarmed trypsin (see Note 5).

3. Place the flask in the incubator for 10 min to allow the cells to
detach from the surface. Add prewarmed fresh DMEM
medium to the flask to inactivate the trypsin.

4. Use a cell counter to determine the cell density and then dilute
to 5 � 105 cells/mL. This cell suspension is then pipetted
(500 μL) onto the sterilized cut microscope slides. Place the
petri dish in the incubator for ~15 min, so the cells can adhere
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to the slides. Prewarmed fresh medium is gently poured into
the petri dish without disturbing the slides until the dish is ¾
filled. Place back the petri dish into the incubator and perform
LAESI analysis 1 h later.

3.2 LAESI Direct

Analysis of Adherent

Mammalian Cells

1. Assemble both the ESI and LAESI optical components as
mentioned in Subheading 2. Run the ESI for 30 min to assure
a stable spray prior to any analysis.

2. Place the mass spectrometer into operational mode and per-
form the appropriate mass and drift time (DT) calibrations
using sodium formate and polyalanine, respectively. LAESI
mass spectra should be obtained for both calibration events.

3. Once the LAESI source is optimized, the slides containing the
SK-N-AS cells can be analyzed. A slide is removed from the
medium with tweezers, gently rinsed with 10� diluted PBS,
and placed onto the sample mount for analysis.

4. Start the data acquisition, the first ten scans are of the ESI
background followed by firing the laser and rastering the laser
beam over the cell surface. Sample related ions can be tracked
using their ion chromatogram.

5. End the acquisition by stopping the laser from firing, turning
off the ESI high-voltage power supply and the syringe pump.
Place the instrument in standby mode.

6. The acquired data are ready to be processed.

3.3 Separation

and Classification

of Small Molecules

from LAESI Data

1. Using the IMS feature, the data sets can be visualized as a
DT vs. m/z plot showing the ion intensities on a false color
scale using the DriftScope 2.4 software (Waters, Milford, MA).
Here the sample-related peaks, PBS ion clusters, and ESI back-
ground ions can be differentiated as red, teal, and blue dots,
respectively (see Fig. 1a). Regions of interest can be extracted
individually to produce enhanced mass spectra with reduced
spectral interferences for the three different groups (see
Fig. 1b–d).

2. As each ion appears at a specific DT range based on its size,
shape, and charge state, looking at the DT distributions results
in separation and improved signal-to-noise ratios. From the
LAESI mass spectrum of the SK-N-AS cells, several metabolites
can be identified using tandem MS, database searches and the
CCS measurements on the order of milliseconds (see Fig. 2).
Small molecules, e.g., adenine and glutamine have shorter DT
values compared to lipids.

3. The CCS calibration is applied after data acquisition using the
DriftScope 2.4 software and correlates the polyalanine unit
drift times with the CCS values (Table 1). For our example,
the related equation is Ωcalibration ¼ A(t0d)

B, in which
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Fig. 1 (a) A DT vs.m/zmap corresponding to a LAESI mass spectrum of adherent SK-N-AS neuroblasts in 10�
diluted PBS. Separation of ions related to the cells, PBS, and ESI background within the plot is displayed in red,
teal, and blue dots, respectively. To enhance the ion signal and provide spectral separation for each group,
three selected regions within the DT vs.m/z plot were extracted into individual mass spectra containing the (b)
cells, (c) 10� diluted PBS, and (d) ESI-related ions

Fig. 2 Measured DT distributions for several metabolites and lipid species from a typical LAESI mass spectrum
of SK-N-AS neuroblasts
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A ¼ 466.443, and B ¼ 0.573, and R2 is 0.9996 (see Fig. 3).
This calibration is then applied to the LAESI DT vs. m/z plots
that correlate the detected ion m/z values with the CCS.

4. Extract all CCS measurements and m/z values using the Drift-
Scope 2.4 software.

5. Plotting CCS vs. m/z, some classes of homologous com-
pounds can be revealed based on observed trends, e.g., amino

Table 1
Measured CCSnitrogen and DT values for polyalanine oligomers with
n ¼ 3–14 in negative ion mode

n m/z DT (ms) CCS (N2) (Å
2)

3 230.117 35 150

4 301.159 41 165

5 372.199 48 179

6 443.237 57 195

7 514.274 65 209

8 585.312 72 223

9 656.348 80 238

10 727.392 89 253

11 798.427 98 267

12 869.471 107 279

13 940.512 117 294

14 1011.547 127 308

Fig. 3 Polyalanine CCS calibration plot for n ¼ 3–14 oligomers using nitrogen
buffer gas in negative ion mode. The corrected DT reflects mass-independent
flight times
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acid CCS values were within 121–137 Å2, ribonucleotides
ranged between 158 and 180 Å2, and lipids within
281–310 Å2 (see Fig. 4a).

6. Examining the lipid species in the CCS vs. m/z plot, revealed
separation based on lipid class and degree of saturation (see
Fig. 4b). For example, the phosphatidylethanolamine lipids
have smaller headgroups than phosphatidylserines and phos-
phatidylinositols, thus they have a smaller CCS values than the
two latter lipid classes.

4 Notes

1. The SK-N-AS cells are biosafety level one (BSL-1), thus all cell
handling should be performed in a BLS-1-rated hood. Person-
nel working with these cells should undergo biohazard train-
ing. Additionally biohazard signs should be placed on all
equipment and instruments that may come in contact with
the cells.

2. Extreme caution should be used when dealing with high-
voltage systems. Direct contact to the ESI emitter assembly
can result in injury or death. Experimental precautions include
shielding, insulting, and limiting the exposure of electrical
components. Visual signs indicating high voltage should be
displayed, and foot traffic within the surrounding area is limited
during experiments. The high voltage should be turned off
during removal and placement of samples.

Fig. 4 (a) A CCS vs. m/z plot that reveals separation and classification of detected metabolites from adherent
SK-N-AS cells analyzed by LAESI-IMS-MS. Unique trends were observed for each homologous class of
molecules and the PBS-related ions. (b) A zoomed area within the lipid region from the CCS vs. m/z plot
revealed separation of specific lipid classes as well as trends based on degree of saturation. The lipid species
phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were detected as
[M�H]� species, whereas the phosphatidylcholine (PC) species were detected as [M+Cl]� adducts
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3. The mid-IR laser source is a Class IV laser system, thus precau-
tionary measures must be taken to prevent injury or death.
Appropriately rated laser safety goggles and clothing must be
worn to avoid laser beam exposure. Beam blocks and enclosure
tubes should be used to shield the laser beam throughout the
optical path. Proper protection should also be used for the
Class II laser alignment diode (635 nm wavelength).

4. Helium, argon, and carbon dioxide can also be used as alterna-
tive drift gases and will result in different CCS values.

5. To reduce any environmental shock to the cells, avoid washing
with water and store the adherent cells in the incubator
between analyses. Analysis should be performed within a cou-
ple of minutes of washing the cells with 10� diluted PBS.
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